KU LEUVEN

Design and analysis of a microplate assay in the presence of multiple restrictions on the randomization

Alexandre Bohyn

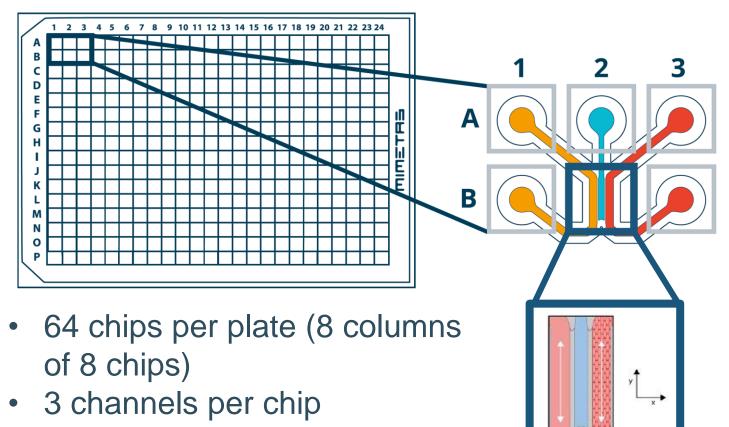
6th ICODOE - May 2023

Outline


- 1. What are microplates and why are we studying them ?
- 2. What are the randomization restrictions in the experiment?
- 3. How did we generate the design?
- 4. What did we learn from the experiment ?

Co-Authors: Eric Schoen and Peter Goos

Collaboration with Mimetas B.V. (Leiden, NDL)



What are microplates and why are we studying them ?

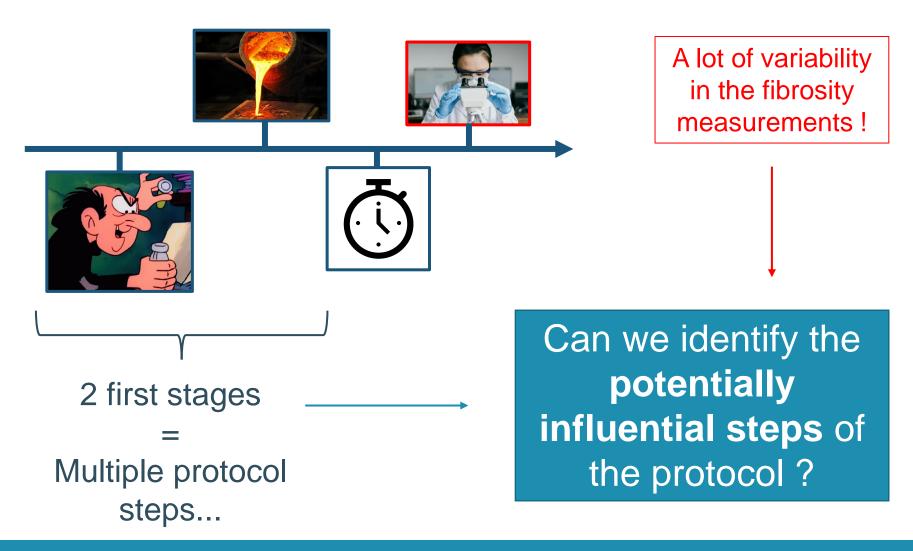
OrganoPlate[®] by Mimetas

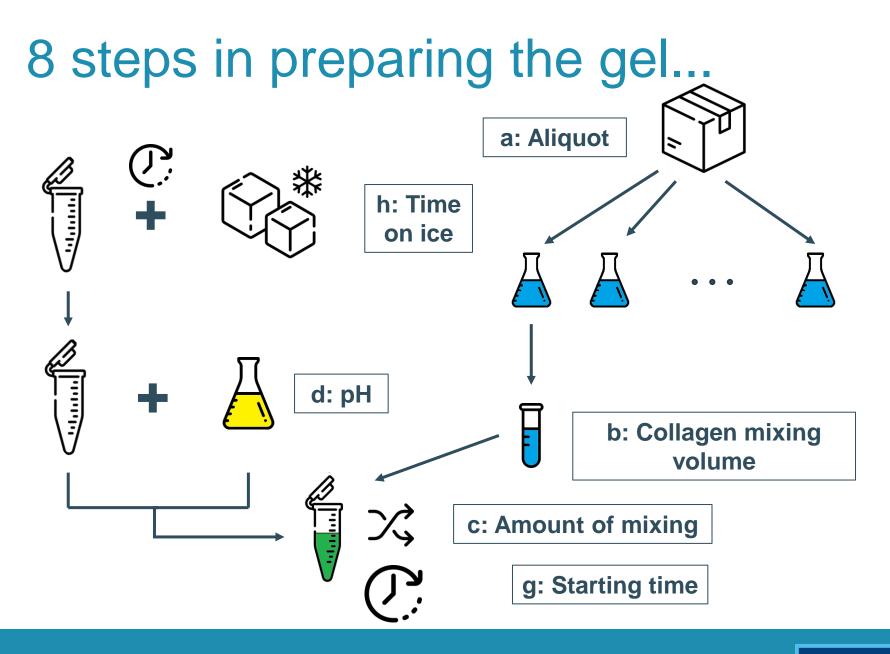
- Pour gel in channel 2
- Grows cells in channels 1 3


Preparation in a few global steps

2. Pour into the chips

4. Measure fibrosity





3. Wait for gel to set

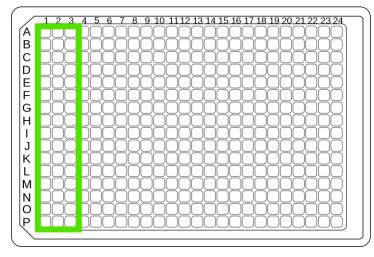
What is the problem ?

... and finalizing the plate ...

... means 8 factors studied...

a b c	Aliquot Collagen mixing volume (µl)	Late 100	Early 300
			300
C	A mount of mixing		
	Amount of mixing	20	50
d	pH of solution	7,1	8,3
g	Starting time (min)	10	60
h	Time on ice (min)	1	30
e	HBSS Mg/Ca levels	-	+
f	HBSS removal	No	Yes
g		Starting time (min) Time on ice (min) HBSS Mg/Ca levels	Starting time (min)10Time on ice (min)1HBSS Mg/Ca levels-

Time-related factors


Four plates available

- 4 plates available: → 4 × 64 = 256 runs ?
- Factors can only be varied by column

 → only 8 runs per plate
- 4 plates × 8 columns = 32 runs

8 two-level factors studied over 32 runs

Should be easy, right ?

What are the randomization restrictions in the experiment?

Weeks and plates Time-related factors

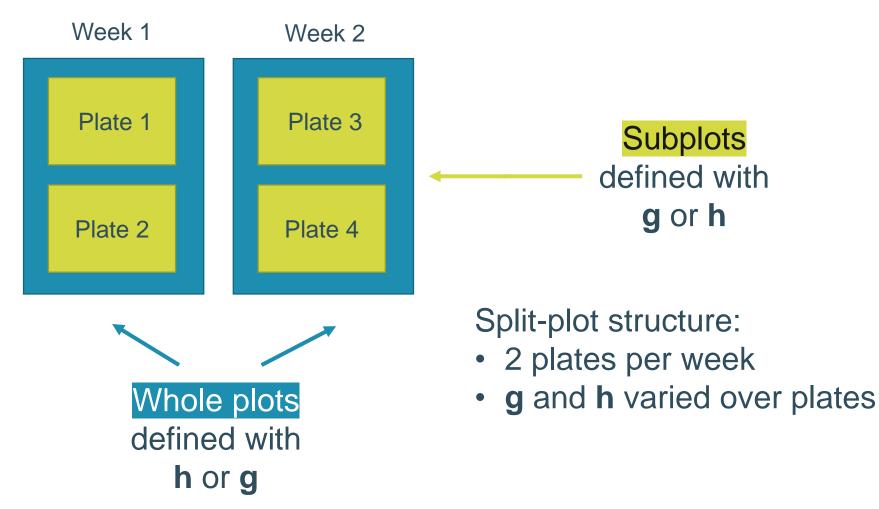
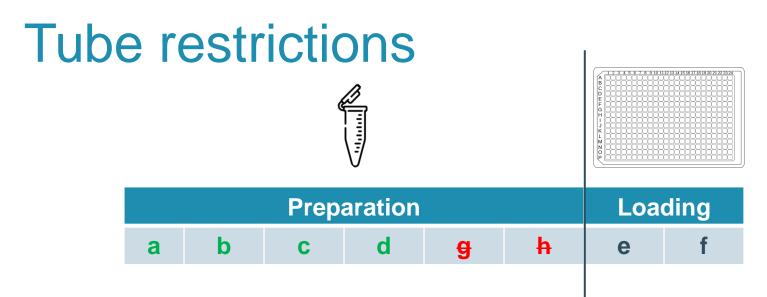

- Factors **g** and **h** can only be varied <u>between the plates</u>
- Plate processing is *time-consuming*, so, we only have <u>two plates</u> processed <u>per week</u>
- Only three options to define the weeks and plates

Plate	g	h
1	+	+
2	+	—
3	—	+
4	—	—


Week (h)	Week (g)	Week (gh)
1	1	2
2	1	1
1	2	1
2	2	2

Split-plot structure

- 4 factors can be varied between the tubes
- 32 runs so naturally \rightarrow 32 tubes (one per run)
- Only <u>8 tubes</u> feasible <u>per week</u> \rightarrow 16 tubes in total

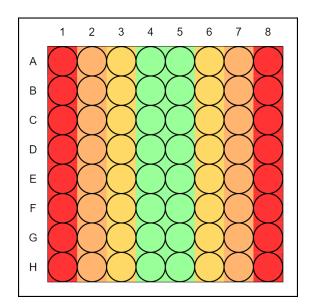
How to dispatch the 16 tubes over the 4 plates ?

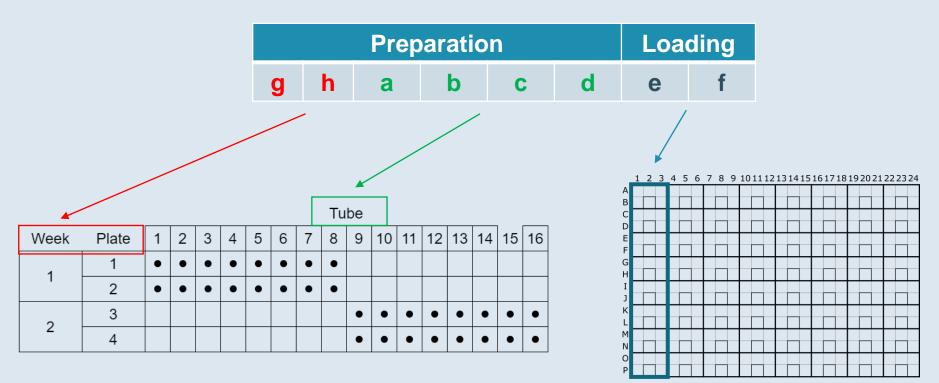
We reuse the tubes

Each tube is used once on each plate within a week:

Split-strip-plot structure

 \rightarrow Week / (Plate \times Tube)

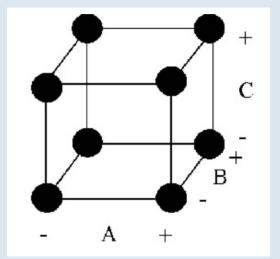

									Tu	be							
Week	Plate	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	•	•	•	•	•	•	•	•								
	2	•	•	•	•	•	•	•	•								
2	3									•	•	•	•	•	•	•	•
	4									•	•	•	•	•	•	•	•


Careful about the edge effects...

- Edge effect = uneven response depending on position on the plate
- Taking it into account:

 → Balancing the factor levels over the column positions on the plate
- We create **8 blocks for the 8** column positions of a plate
- Equivalent to arrange design for factors a to f in 8 blocks

In summary: 8 factors and a complex structure



Split-strip-plot

+ 8 blocks over the column positions

How did we generate the design?

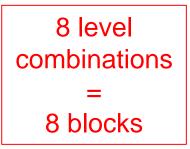
Regular design created in 4 steps

- 1. 2^{6-1} design for factors **a** to **f**
- 2. Arrange the design in 8 blocks (= 8 column positions)
- 3. Define the two remaining factors **g** and **h**
- 4. Ensure that there are indeed 8 tubes per week, used once on each plate (split-strip-plot structure)

Steps 1 and 2

1. 2^{6-1} design for factors **a** to **f**:

Resolution VI design with **f** = **abcde**


2. Arrange the design in 8 blocks:

Blocking scheme from Mee (2009) with:

$$p_1 = ab;$$
 $p_2 = ce;$ $p_3 = acf$

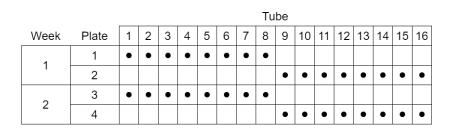
 \rightarrow minimizes confounding two-factor interactions with blocks

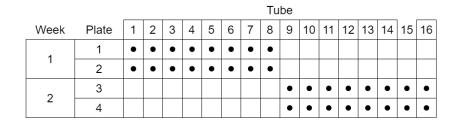
p ₁	p 2	p 3	Col.
+	+	+	1
+	+	—	2
+	—	+	3
+	_	—	4
_	+	+	5
_	+	_	6
_	_	+	7
_	_	_	8

Several options for Step 3

- 3. Define factors **g** and **h**
 - Add orthogonal blocking over factors a-f using the OApackage:
 - \rightarrow only 3 regular options
 - Determine aliasing between a-f and the four blocks
 - Link these effects with factors g and h
 - Pick the best option

Four blocks = four plates


Option	Factor	Aliasing
	g	$\mathbf{ace} + \mathbf{bdf}$
1	\mathbf{h}	$\mathbf{abc} + \mathbf{def}$
	$^{\mathrm{gh}}$	be
	g	cd
2	h	ad
	$\mathbf{g}\mathbf{h}$	ac
	g	$\mathbf{e}\mathbf{f}$
3	\mathbf{h}	ad
	$\mathbf{g}\mathbf{h}$	ce


Only two choices for Step 4

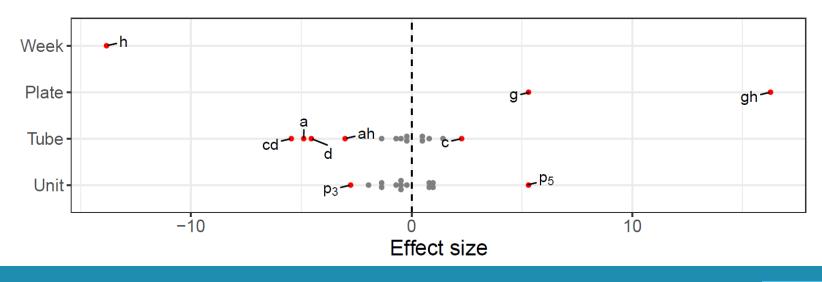
Among factors **g** and **h**, one is used for the <u>weeks</u> and the other for the <u>two plates per week</u>

Factor g for weeks

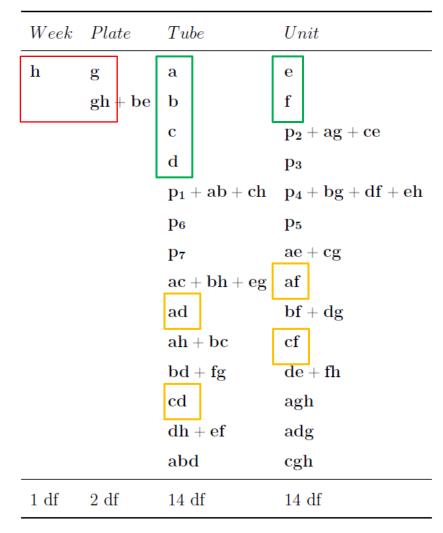
Factor h for weeks

Each of the 16 tubes used once in each week

Each tube is used twice within a week



Effects divided in strata


- Effects assigned to the level at which they vary:
 - Level is called a stratum
 - Ex: h varies between the weeks → week stratum

Stratum	df
Week	1
Plate	2
Tube	14
Unit	14

• Four strata: Week, Plate, Tube, Unit

Error structure

- No main effects aliased with 2FI or 3FI
- Four 2FI not aliased with another 2FI
- Main effects of factors
 g and h, and their
 interaction gh are not
 testable (not enough df)

What did we learn from the experiment ?

Conclusion

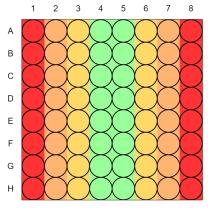
Conclusions

- Practical conditions impose restrictions on the randomization
- Even simple experiments can have a complex error structure
- Mimetas very satistified with DOE → better protocol implemented

Thank you for your attention

Extra slides on the data analysis and alternative scenarios

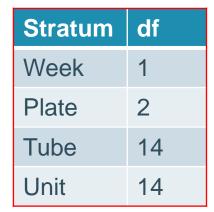
What if we could change things ?

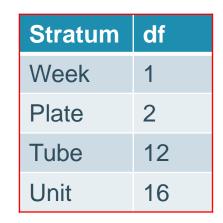

Alternative scenarios

Four alternative scenarios

All scenarios make sense in practice:

- 1. Each tube is used twice on a single plate
- 2. 32 tubes are available instead of 16
- 3. All factors can be varied between the columns of the plates
- 4. Symmetric edge effect: only 4 blocks over the columns

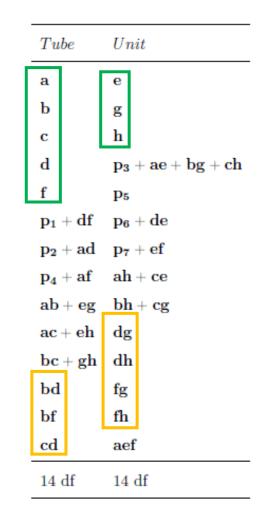




Tubes used twice on a plate

- Back to the split-split-plot scenario discussed earlier
- Achieved by changing the allocation of tube to treatments
- Only change in <u>error structure</u>

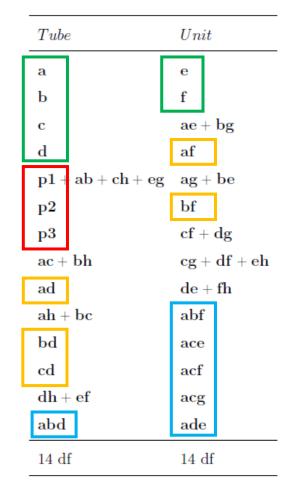
								Tu	be							
Plate	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	•	•	•	•												
2					•	•	•	•								
3									•	•	•	•				
4													•	•	•	•


32 tubes available

- Each run gets its own tube
 → 16 tubes per week
- Similar to using factor g to define the weeks
- No variation at tube level
 → no more *Tube* stratum !
- 28 df in Unit stratum
 → Easier to detect active
 effects there

Week = g	Plate = I	า	Tubes used
+	+		$1 \rightarrow 8$
+	_		9 → 16
_	+		$1 \rightarrow 8$
_	_		9 → 16
_	ould be ered 17 to 32		
	Stratum	dí	
	Week	1	
	Plate	2	
	Unit	28	3

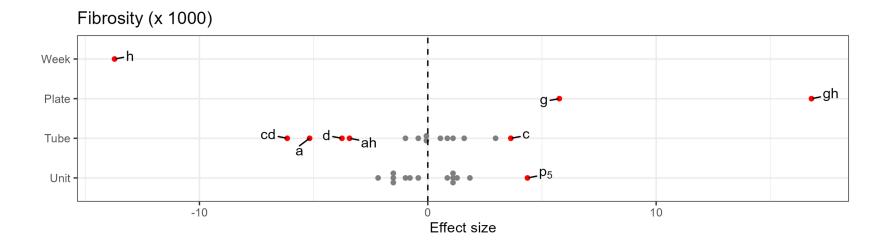
All factors varied over the columns


- Redo 4-step design generation process
 - $2^{6-1} \rightarrow 2^{8-3}$ (**a** to **h**)
 - Week stratum contains: cf
 - Plate stratum contains: ade, ag
- → Better allocation of effects to error strata
- All main effects can be tested
- Now seven 2FI are not aliased with other 2FI (four in the original scenario)

Four-level blocking factor

- Start with the same 2^{6-1} design
- Add a <u>four-level</u> blocking factor <u>instead of eight-level</u>
- 4 levels → 3 df
- Still only 6 main effects testable
- Now 5 2FI not aliased with another 2FI (compared to 4)
- More **3FI** are unaliased with other effects (6 compared to 3)

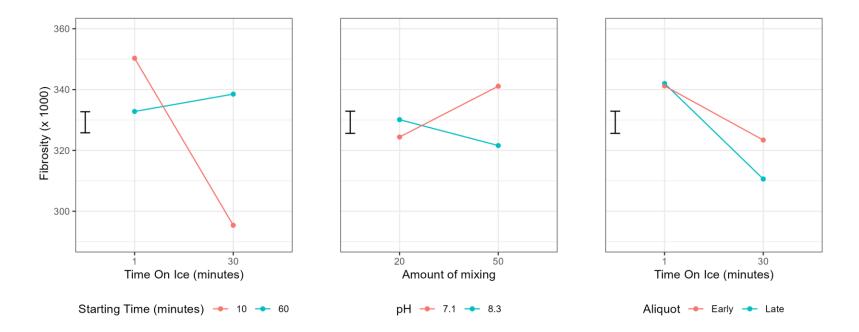
Conclusion on the scenarios


Scenario	÷	
Tube used twice on each plate	 More power in Unit 	 g, h, gh not testable Less power in Tube
32 tubes	 Single Unit stratum with more power 	 g, h, gh not testable 32 tubes needed
All factors varied	All ME and more 2FI are testable	 More complex logistically
Four-level blocking	• 4 df are free	 g, h, gh not testable Free df to 3FI Assumption over edge-effect

Building the model

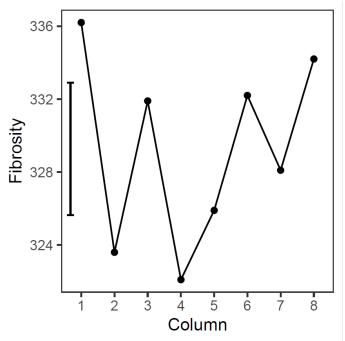
- 1. Estimate 31 coefficients
- 2. Separate them by error stratum
- 3. Compute a robust estimator of the standard error for the two strata with 14 *d.f.*
- 4. Determine active effects
- 5. Build a final model using the active effects

Modelling fibrosity


• Identify the factors that have an effect on fibrosity

Letter	a	С	d	g	h	p_x
Factor	Aliquot	Mixing	рН	Start Time	Time on Ice	Column differences

Effect plots


3 active interactions detected

Column effect

High variation between columns and potential edge effects

All factors varied over the columns

Redo 4-step design generation process:

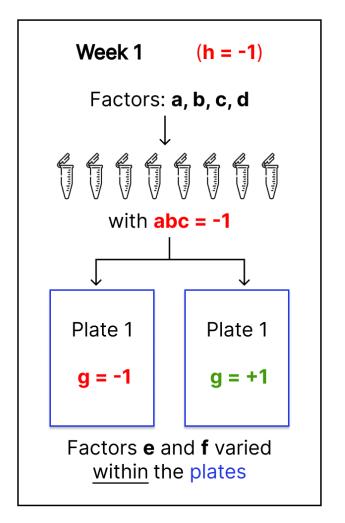
- 1. Choose the MA 2^{8-3} design for factors **a** to **h**: f = abcd; g = abe; h = ace
- 2. Arrange it in 8 blocks using Mee (2009): $p_1 = abc; p_2 = ad; p_3 = ae$
- 3. Add 4-level factor using OApackage to define the weeks and the plates
- 4. Arrange the design in 8 tubes per week:

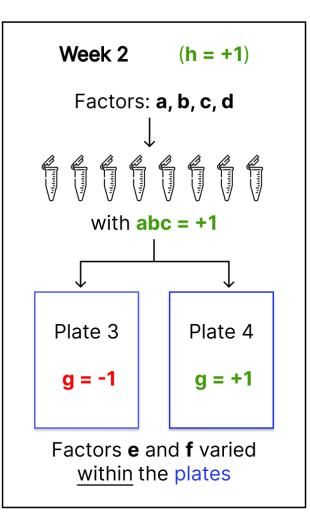
Option	Factor	Aliasing
	$\mathbf{b_1}$	$\frac{1}{1}$ ade $+$ bdg $+$ cdh
1	$\mathbf{b_2}$	$\mathbf{cf} + \mathbf{abd} + \mathbf{deg}$
	$\mathbf{b_3}$	$\mathbf{ag} + \mathbf{be} + \mathbf{dfh}$
	$\mathbf{b_1}$	$\mathbf{b}\mathbf{c} + \mathbf{g}\mathbf{h} + \mathbf{a}\mathbf{d}\mathbf{f}$
2	$\mathbf{b_2}$	$\mathbf{cf} + \mathbf{abd} + \mathbf{deg}$
	\mathbf{b}_3	$\mathbf{bf} + \mathbf{acd} + \mathbf{deh}$
	$\mathbf{b_1}$	$\mathbf{b}\mathbf{c} + \mathbf{g}\mathbf{h} + \mathbf{a}\mathbf{d}\mathbf{f}$
3	$\mathbf{b_2}$	$\mathbf{a}\mathbf{c} + \mathbf{e}\mathbf{h} + \mathbf{b}\mathbf{d}\mathbf{f}$
	$\mathbf{b_3}$	$\mathbf{a}\mathbf{b}+\mathbf{e}\mathbf{g}+\mathbf{c}\mathbf{d}\mathbf{f}$

Weeks = b_2 (*abd*) Plates = b_1 (*ade*)

Four-level blocking factor

- Start with the same 2^{6-1} design
- Add a four-level factor using Mee (2009):


 $p_1 = ab; \quad p_2 = acd$


- 3 regular options to add a fourlevel factor to define factors g and h:
 - 1. Same as scenario 1
 - 2. Resolution III design
 - 3. OK with weeks = **h** = **abc**

Option	Factor	Aliasing
	g	$\mathbf{abd} + \mathbf{cef}$
1	\mathbf{h}	$\mathbf{abc} + \mathbf{def}$
	$_{\mathrm{gh}}$	\mathbf{cd}
	g	$\mathbf{adf} + \mathbf{bce}$
2	\mathbf{h}	ac
	$_{\mathrm{gh}}$	$\mathbf{abe} + \mathbf{cdf}$
	g	$\mathbf{abe} + \mathbf{cdf}$
3	\mathbf{h}	$\mathbf{abc} + \mathbf{def}$
	$\mathbf{g}\mathbf{h}$	ce

Stratum	df
Week	1
Plate	2
Tube	14
Unit	14

Summary of treatments allocation

KU LEUVEN